منابع مشابه
Comparison Results without Strict Convexity
In this paper we establish a comparison result for solutions to the problem minimize ∫ Ω l(‖∇u(x)‖) dx or to the problem minimize ∫ Ω l(γC(∇u(x)) dx, for a special class of solutions, without assuming neither smoothness nor strict convexity of l.
متن کاملStrict convexity of the singular value sequences
If A and B are compact operators on a Hilbert space, with singular values satisfying s j (A) = s j (B) = s j ((A + B)/2) Let A be a compact linear operator from a Hilbert space H into a Hilbert space K. The singular values s 1 (A) ≥ s 2 (A) ≥. .. are the eigenvalues of |A| := (A * A) 1/2. We refer to [3] for other equivalent definitions and basic properties. In this note we offer two proofs, ge...
متن کاملComparison Results and Estimates on the Gradient without Strict Convexity
In this paper we establish a comparison result for solutions to the problem minimize Z Ω f(∇u(x)) dx on {u : u − u0 ∈ W 1,1 0 (Ω)}.
متن کاملLipschitz regularity for minima without strict convexity of the Lagrangian
We give, in a non-smooth setting, some conditions under which (some of) the minimizers of ∫ Ω f (∇u(x)) dx + g(x,u(x)) dx among the functions in W1,1(Ω) that lie between two Lipschitz functions are Lipschitz. We weaken the usual strict convexity assumption in showing that, if just the faces of the epigraph of a convex function f :Rn → R are bounded and the boundary datum u0 satisfies a generali...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1976
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1976-0409896-7